THE CALCULATION OF VELOCITY OF SOUND FOR MOLECULAR

CRYSTALS'

. 2 . vex?
Jurij Avsec®, Milan Mar¢€i¢

"Paper prsented at the Fourteenth Symposium on Thermophysical Properties, June 25-
30, 2000, Boulder, Colorado U.S A.

? University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000
Maribor, P.0. BOX 224, SLOVENIA



ABSTRACT

The paper deals with a mathematical model for the calculation of
thermodynamic properties of solids. The mathematical model, based upon statistical
thermodynamics, is designed to assess the impact of atom vibration, electron excitation
and the effect of intermolecular energy between atoms in a crystal. To calculate the
configuration integral the perturbation theory was used with the van der Waals model as
perturbation. The temperature-variable coefficients were introduced into the model
presented in this paper. Finally, the model was compared with the experimental data

proving a good matching.
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1. INTRODUCTION

The need for mathematical modeling of thermodynamic properties of state arises in
various fields. Currently, a growing emphasis is placed on new materials, such as
different alloys, polymers, plastic material and ceramics [1,2]. Due to a large number of
possible combinations of various components mathematical models are frequently used
to predict thermodynamic properties. Mathematical modeling is often used also in some
metallurgical processes, such as sintering, corrosion, welding.... Furthermore, analytical
computation of thermodynamic properties of state in solids is of paramount importance
also in a number of other fields such as planetary physics, for example. Another
important area is the production of liquid-solid, solid-gaseous phase diagrams [3]. At
higher pressure and temperature bands such measurements may be very costly, which is

why mathematical models are often used instead.

2. STATISTICALTHERMODYNAMICS OF SOLIDS

Assume that each form of motion is independent of the others; thus, the energy of the
system of molecules can be written as a sum of individual contributions or decoupled
forms of motion:

a) Vibration energy of molecules (vib) due to the relative motion of atoms inside the

molecules.

b) Potential energy (pot) of a system of molecules, which occurs due to the attractive or

repulsive intermolecular forces in a system of molecules.

c¢) Energy of electrons (el), which is concentrated in the electrons or in the electron shell

of an atom or a molecule

d) Nuclear energy (nuc), which is concentrated in the atomic nuclei.




Writing down the energy of the ground state (0) as a sum of individual contributions
of energies in the ground state for a system of molecules, we obtain:

EO :Evibo +E610 +E +.ee. (l)

nucg

The energy required to excite the system of molecules to higher energy levels is:
E=Eq +Eyjp *Eg *Epye * Econt - (2)

—potential intermolecular energy depends upon the position of nuclei in the space

- we neglect the influence of the orientation of a molecule in the space,

— we assume that the intermolecular energy of the system of molecules is an additive
property,

— since in the presented model the phenomena treated are at higher temperatures,
where quantum effects have a very low influence, we used classical statistical
thermodynamics to compute the thermodynamic properties of state of one-, two- or
multi-atom molecules. To this end, we can use the canonical partition [4], which deals
with the system of particles with the final number of particles N, the temperature T and
the volume V.

Now introduce the term of partition function Z [5,6], which applies to the system of
particles at a certain volume V, temperature T and particle number N.

Assuming that the energy spectrum is continuos and having the above assumptions

we can then write the canonical partition function for the one-component system in an

even easier manner:
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The second term on the right-hand side in Eq. (3) is called the configurational
integral, f'is the number of degrees of freedom of an individual molecule.
Similarly, we can write down also the partition function Z for a multi-component system

of indistinguishable molecules:
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In Eq. (4) N; is the number of molecules of the i-th component, f; is the number of
degrees of freedom of the i-th molecule. On the basis of all indicated generalizations we
can write, using the canonical partition, the partition function Z of the one-component
system as a product of partition functions:
2=2yZiwZ oLyl cont (5)
For a system of many components the partition function Z [1,7,8] can be written as a

product of partition functions for individual terms:

Z= I_l (ZOZVineIZnuc)iZconf = I_l ZiZconf (6)
i i

By means of the partition function Z the canonical theory allows the computation of

thermodynamic properties of state [9-11]:

pressure: p = kBTE%E , internal energy: U = kpT? Em—nZB )
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3. VELOCITY OF SOUND

Using Eq. (7) we can calculate also some derived thermodynamic properties of
state,such is velocity of sound. Velocity of sound is the velocity of the propagation of
longitudinal sound waves. The calculation of the velocity of sound is very important
primarily in the measuring systems, such as in acoustic measuring devices of the level of
the cooling medium. In most processes the assumption on isentropic velocity of sound is
a sufficiently good approximation. In some processes, such as the process of dissociation

and ionisation, the assumption on isothermal velocity of sound is closer to the real state.

. . 1
Isentropic velocity of sound: cog = [— v?2 Ba_pB H— (8)
DV, M
. 1
Isothermal velocity of sound: ¢y = |- v? Bd_pB H— 9)
OV, M

4. VIBRATION PROPERTIES OF SOLIDS

Our thermodynamic system consists of N particles associated by attractive forces.
Atoms in a crystal lattice are not motionless but they constantly thermally oscillate
around their positions of equilibrium. At temperatures far below the melting point the
motion of atoms is approximately harmonic [10,11]. This assembly of atoms has 3N-6
vibration degrees of freedom. Ignore 6 vibration degrees of freedom and mark the
number of vibration degrees of freedom with 3N.

Through the knowledge of independent harmonic oscillators the distribution

function Z [10] can be derived as follows:



(10)

In Eq. (10) v is the oscillation frequency of the crystal. The term hv/k is the Einstein
temperature Og.

In comparing the experimental data for simple crystals a relatively good matching with
analytical calculations at higher temperatures is observed whereas at lower temperatures
the discrepancies are higher. This is why Debye corrected the Einstein’s model by taking
account of the interactions between a number of quantized oscillators [10,11,12]. Using
the canonical distribution the partition function [11] may be written as:

InZ = g e—D—3ND]nE expB— %m
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In Eq. (11) ©p is the Debye temperature: 6p, Vm% By developing the third term in

Eq. (11) into a series for a higher temperature range [13] we can write:

_E__plpylal Lo, (12)
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Using Eq. (12) Eq. (11) turns into the following expression:
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The relation between the Einstein and Debye temperature may be written as™> >

8, =(0.72..0.75)8,, . (14)



The Debye characteristic temperature was determined by means of the Griineisen
independent constant Y:

B, =CVY, (15)
where C is constant dependent on material.

We developed a mathematical model for the calculation of thermodynamic properties
of polyatomic crystals. The derivations of the Einstein and Debye equations, outlined in
the previous paragraphs, apply specifically to monoatomic solids, i.e. those belonging to
the cubic system. However, experiments have shown that the Debye equation represents
the values of specific heat and other thermophysical properties for certain other
monoatomic solids, such as zinc, which crystallizes in the hexagonal system. Suppose
that the crystal contains N molecules, each composed of s atoms. Since there are Ns
atoms, the crystal as a whole has 3Ns vibrational modes. A reasonable approximation is
obtained by classifying the vibration into

a) 3N lattice vibrations, which are the normal modes discussed in the Debye

treatment (acoustical modes).

b) Independent vibrations of individual molecules in which bond angles and lengths

may vary. There must be 3N(s-1) of these (optical modes). We expressed the

optical modes using the Einstein model.

5. INFLUENCES OF ELECTRONS
5.1 Electronic Gas in Metals
We are interested in electrons capable of moving in a crystal and not belonging to

any individual atoms but entirely to the crystal. Such are, for example, conduction



electrons in metals. A number of such electrons may be called electronic gas. Using the
Fermi-Dirac statistics the configuration integral [9,10,11,12,13] may then be calculated

for temperatures lower than the Fermi temperature:

23
T, = — 16
F Kp (16)

For metals the Fermi temperature is a few thousand kelvins. In Eq. (26) &€ is Fermi

energy.

(17)

5.2 Influence of Electron Excitation
To calculate the influence of electron excitation into excited states classical
models of statistical thermodynamics may be used. The electron partition function for the

technical range of temperatures and pressures can be written as follows:

Zy = %61(0) + 8l @XP% %% (18)

In Eq. (18) Bg is electronic characteristic temperature, gei) and gei1) are the degrees of

degeneration of the basic and the first excited state.

6. CRYSTAL BONDS

The bonds between the atoms or molecules in a crystal are of electrostatic nature.
They are based upon Coulomb's law of attractive and repulsive forces. Atoms are
associated into a crystal if the total energy of the system is reduced. Roughly speaking,

bonds may be classified into the into the following types:
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a) Van der Waals bonds result from forces between inert atoms and mostly saturated
molecules [5,9,11,12,14]. Van der Waals (VDW) forces appear due to time-varying
dipole moments occurring due to a rapid motion of electrons. In solids this form of bond
is rather rare. The system of molecules bound in this manner is called a molecular crystal,
typical of some molecules such as CO,, CHi, NHj;... The properties of substances
bound by means of the VDW bond are softness, low melting point and solvability in
covalent liquids.

b) Ionic bonds occur due to interactions between ions of opposite charge, which results
in an arranged three-dimensional structure

c¢) Covalent or strong bond is formed if one or more electrons are shared between two
atoms

d) Metallic bond_occurs in metallic crystals with external valence electrons relatively
weakly bound to the nucleus of the atom.

e) Hydrogen bond, which plays an important role in ice, hydrates of salt, is formed in
polar parts of molecules where hydrogen is present.

The analytical calculation of configuration integral in solids is a very difficult task. Most
frequently numerical procedures are applied in practical computations by means of the
Monte-Carlo method [8,13]. Nevertheless, the presented method requires a lot of
computer time with another serious drawback being also that it does not provide a
functional dependence of thermodynamic properties on temperature and volume.
Empirical equations® are frequently used as well, though mostly without any theoretical
basis built on a molecular view of the world. In the paper presented we used the
perturbation VDW theory for solids around the model of hard spheres [16,17,18] to

calculate the thermodynamic properties of state. In order to calculate the mixtures of
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atoms of hard spheres we obtain the configuration free energy for a certain binary

crystal:

E—ﬂnELE*S 124 D]nV -20. 78V +9. 52\/*2
AconfO NkBT

B‘l~98V +Co +; nyy + 4, Ony,

(19)

[y

Co=15.022, V =— V,=

\z V2
To calculate the perturbation contribution the VDW model was used. In most of

the technical literature [16-18] the VDW model is treated only in relation to atomic

structure, whereas we additionally presented the temperature-dependent coefficients.

Ao a0y, T) 20)

confl =™ Vv

The configuration integral is thus formed by the contribution of hard spheres and
perturbation:

A :AconfO +Aconf1~ (21)

conf
In our case coefficient a was determined as a temperature-dependent polynome following

a comparison between experimental data and analytical results:
a=a +a1T+a2T2. (22)
Coefficients ao, a;, a, are obtained by numerical approximation and the comparison with

thermodynamic data.

7. RESULTS AND DISCUSSION
The presented mathematical model was used to calculate thermodynamic properties of

state of some solids, namely:
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1. Copper (Cu), as a typical representative of metallic bond.

2. Sodium chloride (NaCl), as a typical representative of ionic bond.

3. Carbon dioxide (CQy), as a typical representative of molecular crystals.
Tables 1,2, and 3 show the comparison between analytical calculations and experimental

values [12,19]. Presented are the results of enthalpy, specific heat and velocity of sound.

The comparison of results showed a very good matching with experimental data,
particularly for copper. Somewhat less optimum is the matching of analytical calculations
with experimental data, such as NaCl and CO,. The reason for such a higher discrepancy
between the measured and calculated results lies in the complex structure of crystals

composed of diverse atoms.

NOMENCLATURE.

A free energy

AAD average absolute deviation
an. analytical results

Cos  isentropic velocity of sound

Cor isothermal velocity of sound

Cy heat capacity at constant volume per mole
Co heat capacity at constant pressure per mole
E energy

Exp. Experimental results
f number of degrees of freedom

g degree of degeneration



enthalpy, Hamiltonian
Planck constant

Boltzmann constant
molecular mass

number of molecules in system
pressure, momentum
entropy

temperature, kinetic energy
Fermi temperature

internal energy

volume, potential energy
partition function
oscilation frequency

Fermi energy

electronic temperature
Debye temperature
Einstein temperature

Grineisen constant

13
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TABLES

Table 1: Isentropic and isothertmal velocity of sound for copper

T \% Cosan. Cos€Xp. CoT-an. CoT-€XP.
K 10°m*mol m/s m/s m/s m/s
250 7.04 3860 3859 3805.2 3807.4
300 7.06 3860 3838 3780.7 3775.8
500 7.12 3945 3754 3851.7 3651.4
800 7.26 3538 3668 34133 35153
1200 7.45 3687 3631 3395.8 3369.4

AAD 0.0215 0.0187

16



Table 2: Isentropic and isothermal velocity of sound for sodium chloride

T \% Cosan. Cos€Xp. Cor-an. Cor-€Xp.

K 10°m®/mol m/s m/s m/s m/s

125 26.60 3132 3382 3116 3356

150 26.60 3636 3378 3547 3345

175 26.70 3362 3380 3335 3335

250 26.90 3304 3368 3242 3299

290 27.00 3400 3366 3302 3278

AAD 03694 0313




Table 3: Molar heat capacity at constant pressure and enthalpy for carbon dioxide

T A% Cpan. Cpexp. H-an. H-exp

K 10°m¥mol  J/molK J/molK kJ/mol kJ/mol

173 27.588 51 491 4,62 5,49
183 27.808 532 528 541 6,07
193 28.116 554 548 6,39 6,60
203 28.468 57,5 64 7,26 7,17
213 28.908 597 70,4 8,61 7,90

2 2 2

AAD .062 0.081




